Формула для изменения внутренней энергии газа. Способы изменения внутренней энергии тела


Энергия представляет собой общую меру различных форм движения материи. Соответственно формам движения материи различают и виды энергии – механическую, электрическую, химическую и т.д. Всякая термодинамическая система в любом состоянии обладает некоторым запасом энергии, существование которой было доказано Р.Клаузиусом (1850) и получило название внутренней энергии.

Внутренняя энергия (U) – это энергия всех видов движения микрочастиц, составляющих систему, и энергия их взаимодействия между собой.

Внутренняя энергия складывается из энергии поступательного, вращательного и колебательного движения частиц, энергии межмолекулярного и внутримолекулярного, внутриатомного и внутриядерного взаимодействий и др.

Энергию внутримолекулярного взаимодействия, т.е. энергию взаимодействия атомов в молекуле, часто называют химической энергией . Изменение этой энергии имеет место при химических превращениях.

Для термодинамического анализа нет необходимости знать из каких форм движения материи складывается внутренняя энергия.

Запас внутренней энергии зависит только от состояния системы. Следовательно, внутреннюю энергию можно рассматривать как одну их характеристик этого состояния наравне с такими величинами, как, давление, температура.

Каждому состоянию системы соответствует строго определенное значение каждого из его свойств.

Если гомогенная система в начальном состоянии имеет объем V 1 , давление P 1 , температуру T 1 , внутреннюю энергию U 1 , удельную электропроводностьæ 1 и т.д., а в конечном состоянии эти свойства соответственно равны V 2 , P 2 , T 2 , U 2, æ 2 и т.д., то изменение каждого свойства при переходе системы из начального состояния в конечное будет одним и тем же, независимо от того, каким путем переходит система из одного состояния в другое: первым, вторым или третьим (рис. 1.4).

Рис. 1.4 Независимость свойств системы от пути ее перехода

из обычного состояния в другое

Т.е. (U 2 - U 1) I = (U 2 - U 1) II = (U 2 - U 1) III (1.4)

Где цифры I, II, III и т.д. указывают пути процесса. Следовательно, если система из начального состояния (1) в конечное (2) перейдет по одному пути, а из конечного в начале – по другому пути, т.е. совершится круговой процесс (цикл), то изменение каждого свойства системы будет равно нулю.

Таким образом, изменение функции состояния системы не зависит от пути процесса, а зависит лишь от начального и конечного состояний системы. Бесконечно малое изменение свойств системы обозначается обычно знаком дифференциала d. Например, dU– бесконечное малое изменение внутренней энергии и т.д.

Формы обмена энергией

В соответствии с различными формами движения материи и различными видами энергии существуют различные формы обмена энергией (передача энергии) – формы взаимодействия. В термодинамике рассматриваются две формы обмена энергии между системой и окружающей средой. Это работа и теплота.

Работа. Наиболее наглядной формой обмена энергией является механическая работа, соответствующая механической форме движения материи. Она производится при перемещении тела под действием механической силы. В соответствии с другими формами движения материи различают и другие виды работы: электрическую, химическую и т.д. Работа является формой передачи упорядоченного, организованного движения, так как при совершении работы частицы тела движутся организованно в одном направлении. Например, совершение работы при расширении газа. Молекулы газа, находящегося в цилиндре под поршнем, находятся в хаотическом, неупорядоченном движении. Когда же газ начнет перемещать поршень, то есть совершать механическую работу, на беспорядочное движение молекул газа будет накладываться организованное движение: все молекулы получают некоторое смещение в направлении движения поршня. Электрическая работа так же связана с организованным движением в определенном направлении заряженных частиц материи.

Поскольку, работа является мерой передаваемой энергии, количество ее измеряется в тех же единицах, что и энергия.

Теплота . Форму обмена энергией, соответствующую хаотическому движению микрочастиц, составляющих систему, называюттеплообменом , а количество энергии, переданное при теплообмене, называюттеплотой .

Теплообмен не связан с изменением положения тел, составляющих термодинамическую систему, и состоит в непосредственной передаче энергии молекулами одного тела молекулам другого при их контакте.

Представим себе изолированный сосуд (систему) разделенную на две части теплопроводной перегородкой ав (рис. 1.5). Допустим, что в обеих частях сосуда находится газ.

Рис. 1.5. К понятию о теплоте

В левой половине сосуда температура газа Т 1 , а в правой Т 2 . Если Т 1 > Т 2 , то средняя кинетическая энергия () молекул газа в левой части сосуда, будет больше средней кинетической энергии () в правой половине сосуда.

В результате непрерывных соударений молекул о перегородку в левой половине сосуда часть энергии их передается молекулам перегородки. Молекулы же газа, находящегося в правой половине сосуда, сталкиваясь с перегородкой, приобретут какую-то часть энергии от ее молекул.

В результате этих столкновений кинетическая энергия молекул в левой половине сосуда будет уменьшаться, а в правой – увеличиваться; температуры Т 1 и Т 2 будут выравниваться.

Поскольку теплота является метой энергии, ее количество измеряется в тех же единицах, что энергия. Таким образом, теплообмен и работа являются формами обмена энергией, а количество теплоты и количество работы - мерами передаваемой энергии. Различие между ними состоит в том, что теплота – это форма передачи микрофизического, неупорядоченного движения частиц (и, соответственно, энергии этого движения), а работа представляет собой форму передачи энергии упорядоченного, организованного движения материи.

Иногда говорят: теплота (или работа) подводится или отводится от системы, при этом следует понимать, что подводиться и отводится не теплота и работа, а энергия, поэтому следует не употреблять такого рода выражений как «запас теплоты» или «теплота содержится».

Являясь формами обмена энергией (формами взаимодействия) системы с окружающей средой, теплота и работа не могут быть связаны с каким-либо определенным состоянием системы, не могут являться ее свойствами, а, следовательно, и функциями ее состояния. Это означает, что если система проходит из начального состояния (1) в конечное (2) различными путями, то теплота и работа будут иметь разные значения для разных путей перехода (рис. 1.6)

Конечное количество теплоты и работы обозначают Q и A, а бесконечно малые значения соответственно через δQ и δA. Величины δQ и δA в отличие от dU не являются полным дифференциалом, т.к. Q и A не являются функциями состояния.

Когда же путь процесса буде предопределен, работа и теплота приобретут свойства функций состояния системы, т.е. их численные значения будут определяться только начальным и конечным состояниями системы.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Torywild:

Купить диплом в вашей компании я решила, когда переехала в другой город, а среди своих вещей не смогла найти свой диплом. Без него меня бы не взяли на хорошую высокооплачиваемую работу. Ваш консультант меня заверила, что данная информация не разглашается, и документ никто не отличит от оригинала. Сомнения не оставляли, но пришлось рискнуть. Понравилось, что не нужна предоплата. В общем, получила диплом вовремя и меня не обманули. Спасибо!

Оксана Ивановна:

Когда у меня украли диплом, я ужасно расстроилась. Ведь меня как раз в это время уволили, а найти сейчас хорошую работу без диплома о высшем образовании практически невозможно. Благо, соседка подсказала обратиться в вашу организацию. Сначала я отнеслась с недоверием, но решила рискнуть. Позвонила менеджеру компании, объяснила свою ситуацию. И мне повезло! Все сделали оперативно, а главное, пообещали не разглашать мою тайну. Меня волновало, чтобы впоследствии не всплыл факт покупки мной диплома.

Маша Кутенкова:

Спасибо за работу! Заказывала диплом 1991 года. Когда стали поднимать документы, оказалось, что опыта мало, нужна и бумага, подтверждающая образование. У меня ее не было, причем начальница это знала, и сама порекомендовала вашу компанию (видать, сотрудник я ничего так). На документе она мне указала на детали – мол, в каких годах используют тушь или чернила, толщина подписи и т. д. Спасибо за дотошность и качество!

LenOK:

Начитавшись историй о позорных увольнениях сотрудников, у которых дипломы напечатаны на цветном принтере, я пошла подавать документы в универ. Увы, бюджета нет, денег учиться и оплачивать сессии тоже нет, пришлось рисковать. Хотя я очень рада, что познакомилась с вашей компанией. Хоть меня и не взяли на работу с вашим дипломом, ввиду несдачи практического блока, это не ваша вина. Как найду новое место – сразу к вам, без промедлений!

Jerry Terry:

Наблюдая, с каким конфузом вылетел мой коллега с работы за поддельный диплом, было страшно последовать его примеру. Если бы не кума, которая заказывала у вас – не рискнула бы. Она заверила, что здесь все гладко, и моя фамилия будет везде, где надо. На все про все у меня было 4 дня. Спасибо вам за скорость – справились за 3, еще и успели дотошно изучить способы подделки документов, но ваш бланк не подходит под подделку, значит, сойдет за оригинал.

Андрей:

Никогда бы не мог подумать, что придется покупать диплом. Дочь после школы уехала в Польшу на заработки, когда вернулась через 5 лет, захотела устроиться дизайнером одежды в местный дом моды. Без диплома никто брать ее на работу не хотел. Понимал, что, если не устроится на эту работу, опять уедет. Прошарился вечер в интернете, и на утро с документами дочери был уже в офисе. Через неделю вместе с ней забрал диплом, и она наконец-то осталась работать в своем городе на желанной должности. Не представляете, как я вам благодарен!

где C V – молярная теплоемкость газа при постоянном объеме.

2. Изобарический процесс происходит при постоянном давлении р = const.

Первый закон термодинамики для изобарического процесса записывается так:

(10)

т.е. все члены сохраняются.

В этом случае количество теплоты, необходимое для нагревания газа находится так

где С р – молярная теплоемкость газа при постоянном давлении.

Учитывая, что изменение внутренней энергии газа вычисляется по формуле (9), а работа может быть найдена из уравнения Менделеева-Клапейрона:

первый закон термодинамики можно переписать в виде:

(13)

Из последнего выражения находится связь молярных теплоемкостей С р и C V

где R = 8,31 Дж/(моль × К) – универсальная газовая постоянная.

Из уравнения (14), называемого уравнением Майэра, видно, что С Р > C V .

Большее значение С Р по сравнению с C V объясняется тем, что для нагревания 1 моля газа на 1 К при постоянном давлении требуется подвести больше тепла, чем для нагревания при постоянном объеме, так как часть тепла при изобарном нагревании должна пойти на совершение работы.

3. Изотермический процесс происходит при постоянной температуре T = const.

Первый закон термодинамики для изотермического процесса записывается так:

т.е. все тепло, подведенное к газу, идет только на совершение им работы, так как изменение внутренней энергии, ввиду постоянства температуры, равно нулю.

(16)

Теплоемкость в изотермическом процессе равна С Т = ¥.

Связь теплоемкости газов с числом степеней свободы его молекул

Согласно классической теории теплоемкостей газов молярные теплоемкости газов С Р и C V могут быть определены, если известно число степеней свободы i молекул данного вида. Под числом степеней свободы подразумевают число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела или частицы тела в пространстве. У одноатомных газов, молекулы которых состоят из одного атома (аргон, гелий), движение каждой молекулы описывается тремя независимыми координатами x , y , z , то есть каждая молекула обладает тремя степенями свободы.

Молекула двухатомного газа (водород, азот, кислород, окись углерода и др.) обладает пятью степеней свободы, т.к. кроме трех поступательных движений, она может совершать еще два вращательных движения вокруг

двух взаимно перпендикулярных осей, составляющих прямой угол с линией, соединяющей оба атома. Если расстояние между атомами в двухатомной молекуле может меняться (квазиупругая молекула), т.е. атомы совершают колебательное движение, то такая молекула обладает шестью степенями свободы. Три степени свободы соответствуют поступательному, две – вращательному и одна – колебательному движению атомов молекулы.

Молекулы трехатомного газа (если центры трех атомов не расположены на одной прямой) и многоатомных газов обладают шестью степенями свободы: из них три относятся к поступательному движению и три – к вращательному движению.

В основе классической теории теплоемкости лежит закон равномерного распределения энергии по степеням свободы, позволяющий определить среднее значение энергии одной молекулы.

Средняя кинетическая энергия поступательного движения молекулы одноатомного идеального газа пропорциональна его абсолютной температуре

(17)

Отсюда следует, это энергия, приходящаяся на одну степень свободы поступательного движения, равна . Следовательно, молекула, обладающая i степенями свободы, имеет энергию

где – постоянная Больцмана ( = 1,38 × 10 -23 Дж/К).

Тогда внутренняя энергия одного моля идеального газа будет

, (18)

где N A – число молекул в моле идеального газа.

Дифференцируя это выражение по температуре, получим для молярной теплоемкости идеального газа при постоянном объеме

(19)

Подставляя значение C V в уравнение Майера (8), находим выражение для молярной теплоемкости С Р

(20)

В ряде случаев необходимо знать отношение теплоемкостей С Р и C V , которое будет

Из формул (11) и (12) видно, что по классической теории теплоемкость газов не должна зависеть от температуры.

Адиабатный процесс

Адиабатным называют процесс изменения состояния газа, происходящий без теплообмена с окружающей средой. Всякий, быстро протекающий процесс в газе, практически адиабатен. Адиабатный процесс имеет место в двигателях внутреннего сгорания, холодильных установках и т.д.

При адиабатном процессе , и уравнение первого начала термодинамики принимает вид:

Для одного моля газа можно записать

Таким образом, при адиабатном процессе работа может совершаться только за счет изменения запаса внутренней энергии системы. Следовательно, при адиабатном расширении температура газа должна уменьшаться (dT < 0), а при адиабатном сжатии температура должна повышаться (dT > 0). При адиабатном сжатии - расширении изменяются все параметры состояния газа (р , V , T ). Увеличение температуры газа при адиабатном сжатии происходит вследствие того, что работа, затрачиваемая извне на сжатие газа, целиком идет на увеличение его внутренней энергии.

Подставив в уравнение (23) значение из уравнения Менделеева – Клапейрона и разделив переменные, запишем его в виде

или , (24)

Интегрируя и потенцируя выражение (24), получим:

Уравнения (25) являются уравнениями адиабатного процесса и называются уравнениями Пуассона. Поскольку показатель степени адиабаты , кривая адиабатного процесса (адиабата) идет круче, чем изотерма .

Описание установки и метода измерений

Для определения отношения теплоемкостей используется метод, основанный на адиабатном расширении газа.

Воздух, заключенный в сосуд, последовательно проходит через три состояния (рис. 1). Первое состояние характеризуется параметрами р 1 V 1 T 1 . Второе состояние газа определяется параметрами р 2 V 2 T 2 . Третьему состоянию соответствуют параметры р 3 V 2 T 1 . Из первого во второе состояние газ переходит путем адиабатного расширения. Из второго в третье состояние газ переходит изохорно.

В адиабатном процессе 1-2 давление и объем газа по уравнению Пуассона связаны следующими соотношениями:

Начальное и конечное состояния газа характеризуются одной и той же температурой, поэтому на основании закона Бойля-Мариотта получаем

Решая уравнения (26) и (27) относительно , получим

(28)



Рис. 1

Так как давление р 1 , р 2 , р 3 отличаются друг от друга незначительно, при приближенном вычислении разности логарифмов в формуле (28) можно заменить разностями самих чисел

В проводимом эксперименте давление р 2 равно атмосферному, а давления р 1 и р 3 превышают атмосферное давление р 2 на величины, определяемые высотами столбов жидкости в манометре h 1 и h 2 соответственно. С учетом этого формула (29) для расчета значения примет вид

Измерительная установка для определения состоит из стеклянного баллона большой емкости 1, крана 3, открытого жидкостного манометра 4 и ручного нагнетательного насоса 2 (рис. 2).



Если в баллон при открытом кране 3 накачивается воздух, то давление его в баллоне повышается и становится выше атмосферного на величину h 1 , указываемую манометром. Процесс 1-2 (см. рис. 1) осуществляется открыванием крана 3 с тем, чтобы давление в баллоне сравнялось с атмосферным. Затем идет процесс изохорического нагревания 2-3, в результате которого давление повышается и превышает атмосферное на величину h 2 .

Порядок выполнения работы

1. Открывают кран 3.

2. Насосом 2 нагнетают воздух в баллон и краном 3 отключают его от установки. (Во избежание выброса жидкости из манометра нужно делать 2-3 качания).

3. После того, как температура в баллоне станет равной температуре окружающей среды (давление в баллоне перестанет меняться); производят отсчет разности уровней жидкости в манометре h 1 (снимают показания ма-

нометра в правом и левом коленах L 1 и L 2 , берут их сумму или разность в зависимости от положения нуля отсчета).

4. Открыванием крана 3 дают воздуху, находящемуся в баллоне, достаточно быстро, а, следовательно, адиабатно расширяться до выравнивания давления в баллоне с атмосферным давлением. Кран 3 закрывают в момент, когда прекратится звук, возникающий при выходе воздуха, или же в момент, когда уровни жидкости в обоих коленах сравняются.

5. Как только газ, охлажденный при адиабатном расширении, нагреется до комнатной температуры (примерно через 2-3 минуты после закрытия крана 3), отсчитывают показания манометра L 3 и L 4 и находят h 2 .

6. Вычисляется значение по формуле (30).

7. Опыт повторяют не менее десяти раз при различных избыточных давлениях воздуха (значениях h 1 ).

Обработка результатов измерений

1. Результаты проведенных измерений и вычислений записываются в таблицу.

Значения L 1 , L 2 , L 3 , L 4 , h 1 , h 2 измеряются в миллиметрах столба жидкости, налитой в манометр.

2. Вычисляется среднее значение .



Равновесное и неравновесное состояние газа

Состояние система газа может быть равновесным или неравновесным. Равновесным считают состояние, при котором параметры газа (p , V , T ) остаются неизменными сколь угодно долго, пока какие-либо внешние воздействия не выведут систему из этого состояния (предполагается отсутствие потоков масс, теплоты и т. п.) .
Примером равновесного состояния может служить система из воды и пара, размещенная в закрытом термоизолированном сосуде.

Равновесной системой является также газ, находящийся в теплоизолированном цилиндре под поршнем, на который действует постоянная сила. Но газ, находящийся в цилиндре с подвижным поршнем, может перейти с некоторой скоростью из одного состояния в другое, например расшириться или сжаться.
При расширении газ, прилегающий непосредственно к поршню, находится под меньшим давлением, чем газ, находящийся в удалении от подвижного поршня; при сжатии, наоборот, его давление вблизи поршня выше.
Поэтому состояние газа в данном случае считается неравновесным (в его объеме параметры или параметр различается по величине) . По той же причине будет неравновесным газ, если к цилиндру подвести теплоту, поскольку температура слоев газа, расположенных рядом с нагреваемыми стенками цилиндра будет выше, чем температура удаленных от стенок слоев.

Каждое равновесное состояние системы можно изобразить в системе координат одной единственной точкой, характеризующей постоянство всех параметров.

Последовательность изменения термодинамического состояния системы называют термодинамическим процессом. Термодинамический процесс сопровождается в общем случае изменением всех или некоторых параметров системы газа.
Если изменение параметров газа во времени происходит очень медленно, то их разностью в разных частях системы во время процесса можно пренебречь. Такой переход системы из одного состояния в другое можно условно считать состоящим из непрерывной череды равновесных состояний, т. е. равновесным термодинамическим процессом.
Очевидно, что при переходе газа из одного состояния в другое с конечной скоростью равенство параметров газа соблюдаться не будет, и такой процесс не является равновесным.

Термодинамические процессы могут быть обратимыми и необратимыми .
Обратимым называют равновесный процесс, который протекает в прямом и обратном направлениях через один и тот же ряд равновесных состояний, не вызывая изменений в самой системе и телах, окружающих систему. Т. е. в результате обратимого процесса параметры системы газа первую половину времени изменяются по определенной закономерности, а вторую половину времени они возвращаются к начальному состоянию строго по обратному "пути".
Неравновесные процессы не соблюдают указанные выше условия, т. е. они необратимы.

Все реальные процессы, рассматриваемые теплотехникой, являются необратимыми, т. е. обратимый процесс является идеализированной моделью.



Работа газа

Газ, находящийся в сосуде, при повышенном давлении стремится расшириться, т. е. увеличить свой объем. Препятствовать этому стремлению могут внешние силы, воздействующие на газ. Очевидно, что если газу, несмотря на внешнее силовое противодействие, удается расшириться, то он совершает работу по преодолению этих внешних сил.
Аналогично при сжатии газа, заключенного в сосуде, приходится совершать работу по преодолению давления газа.

Попробуем определить описанную выше работу, выполняемую газом или внешними силами. Предположим, что некоторое количество газа находится в цилиндре под поршнем, скользящим без трения, и к которому приложена внешняя сила. В начальном состоянии система уравновешена – сила, действующая на поршень, уравновешивается давлением газа, и поршень остается неподвижным.

Пусть в результате подвода теплоты газ расширился так, что его давление осталось неизменным, а поршень при этом переместился вверх на некоторое расстояние Δh . При этом газ совершил работу, равную произведению силы на пройденный путь.
Зная давление газа p (которое в процессе остается неизменным) и площадь поршня S , можно определить силу, действующую на поршень со стороны газа: F = pS , а совершаемая газом работа будет равна

ΔA = FΔh = pSΔh .

Но произведение SΔh есть элементарное изменение объема ΔV , занимаемого газом. Таким образом, можно записать, что работа, совершаемая газом, зависит от изменения его объема:

ΔA = FΔh = pSΔh = pΔV .

Если изобразить графически в системе координат переход газа из одного состояния в другое в виде кривой линии, то каждая точка этой кривой будет соответствовать определенным параметрам p i V i .
Разбив эту кривую на элементарные участки, можно условно считать, что на каждом участке давление остается неизменным. Тогда работа газа на элементарном участке будет равна ΔA = pΔV .
Бесконечно сужая участки, мы перейдем к дифференциальному выражению: dA = pdV .

Из этого выражения следует, что когда газ расширяется (dV > 0 ), совершается работа по преодолению внешних сил, и она положительна. Если же газ сжимается внешними силами (dV < 0 ), работа газа отрицательна. В рассмотренной системе мы рассматривали давление, как неизменный параметр. Для того, чтобы определить полную работу газа при переменном давлении, изменяющемуся по функциональной зависимости p = f(V) , необходимо провести суммирование элементарных работ.
В этом случае:

A = Σ pdV или A = ∫ pdV в интервале от V 1 до V 2 .

Графически работа на диаграмме p , V изображается площадью поверхности между кривой p = f(V) и абсциссами V 1 и V 2 (см. рис. 1) .
Как можно понять из графика, работа газа по преодолению внешних сил зависит не только от начального и конечного состояний, но и от пути, по которому протекал процесс. Если кривая p = f(V) будет иметь другую форму (более выгнутая, пологая и т. п.) , то изменится и величина площади, заключенной между этой кривой и осью абсцисс.

В системе единиц СИ за единицу работы принят Джоуль (Дж) . Допускается применение внесистемной единицы – киловатт×час (кВт×ч) , который равен 3,6 МДж .

Внутренняя энергия газа

Каждая молекула реального газа обладает кинетической энергией, обусловленной непрерывным хаотичным (броуновским) движением, а также потенциальной энергией, которая обусловлена взаимодействию с соседними молекулами (силы гравитации и электромагнитного взаимодействия) .
Сумма кинетической и потенциальной энергии молекул называется внутренней энергией газа U . В общем случае внутренняя энергия газа зависит от его параметров – давления, объема и температуры, т. е. является функцией состояния.
При переходе системы из одного состояния в другое внутренняя энергия изменяется.

«Физика - 10 класс»

Тепловые явления можно описывать с помощью величин (макроскопических параметров), измеряемых такими приборами, как манометр и термометр. Эти приборы не реагируют на воздействие отдельных молекул. Теория тепловых процессов, в которой не учитывается молекулярное строение тел, называется термодинамикой . В термодинамике рассматриваются процессы с точки зрения превращения теплоты в другие виды энергии.

Что такое внутренняя энергия.
Какие способы изменения внутренней энергии вы знаете?

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В её основе лежит понятие внутренняя энергия . Само название «внутренняя» предполагает рассмотрение системы как ансамбля движущихся и взаимодействующих молекул. Остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.


Термодинамика и статистическая механика.


Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика.

Термодинамика возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание. Тогда же было доказано, что наряду с механической энергией макроскопические тела обладают ещё и энергией, заключённой внутри самих тел.

Сейчас в науке и технике при изучении тепловых явлений используется как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой

Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

Термодинамической системой называют совокупность взаимодействующих тел, обменивающихся энергией и веществом.


Внутренняя энергия в молекулярно-кинетической теории.


Основным понятием в термодинамике является понятие внутренней энергии.

Внутренняя энергия тела (системы) - это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия.

Механическая энергия тела (системы) как целого не входит во внутреннюю энергию. Например, внутренняя энергия газов в двух одинаковых сосудах при равных условиях одинакова независимо от движения сосудов и их расположения относительно друг друга.

Вычислить внутреннюю энергию тела (или её изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или её изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.


Внутренняя энергия идеального одноатомного газа.


Вычислим внутреннюю энергию идеального одноатомного газа.

Согласно модели молекулы идеального газа не взаимодействуют друг с другом, следовательно, потенциальная энергия их взаимодействия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой т нужно умножить среднюю кинетическую энергию одного атома на число атомов. Учитывая, что kN A = R, получим формулу для внутренней энергии идеального газа:

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

Она не зависит от объёма и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа

т. е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и Т другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но ещё и вращаются и колеблются относительно своих положений равновесия. Внутренняя энергия таких газов равна сумме энергий поступательного, вращательного и колебательного движений молекул. Следовательно, внутренняя энергия многоатомного газа больше энергии одноатомного газа при той же температуре.


Зависимость внутренней энергии от макроскопических параметров.


Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры.

У реальных газов, жидкостей и твёрдых тел средняя потенциальная энергия взаимодействия молекул не равна нулю . Правда, для газов она много меньше средней кинетической энергии молекул, но для твёрдых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объёма вещества, так как при изменении объёма меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит наряду с температурой T и от объёма V.

Можно ли утверждать, что внутренняя энергия реального газа зависит от давления, основываясь на том, что давление можно выразить через температуру и объём газа.

Значения макроскопических параметров (температуры Т объёма V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объёмом.